Transport aérien photovoltaïque

De Solarpedia
Aller à : navigation, rechercher

Le transport aérien : Le projet Solar Impulse

Un projet innovant – Historique des étapes menant à la réalisation

Banniere Solar Impulse.png

Le projet Solar Impulse[1] a repoussé les limites de l’imagination : Réaliser un avion capable de décoller et de se maintenir en vol de façon autonome pendant plusieurs jours sans aucun apport de carburant, en se propulsant uniquement avec l'énergie captée par des cellules solaires disposées sur ses ailes.

L'énergie captée pendant la journée servira à propulser l'avion, mais également à recharger des batteries pour assurer le vol de nuit, ce qui représente un défi conséquent.


Photo Avion Miniature Solaire.png

L'aviation solaire a débuté avec des modèles réduits dans les années 70, lorsque des cellules solaires à prix abordables sont apparues sur le marché. En 1980 que les premiers vols humains furent réalisés. Aux États-Unis, avec le Solar Challenger, un appareil d'une puissance de pointe de 2.5 kW qui a réussi à traverser la Manche en 1981 et réaliser des distances de plusieurs centaines de kilomètres avec une autonomie de quelques heures.

 

En 1990, Eric Raymond effectua avec le Sunseeker, un moto-planeur solaire pesant 89 kg et équipé de cellules solaires en silicium amorphe, la traversée des États-Unis en 21 étapes sur une durée d'environ 2 mois.

Au milieu des années 90, plusieurs avions furent construits pour participer au concours "Berblinger". Le but était de pouvoir monter à 450m/sol à l'aide de batteries et de maintenir un vol horizontal avec une puissance d'énergie solaire de 500W/m2 au minimum, ce qui correspond à environ la moitié de la puissance délivrée par le soleil à midi sur l'équateur. Le prix fut gagné en 1996 par l’avion Icare2 (25 mètres d'envergure pour une surface de 26 m2 de cellules solaires.)

Même sans pilote à son bord, l’avion télécommandé Helios, d'une envergure de plus de 70 mètres, développé pour le compte de la NASA, a établi un record d'altitude à presque 30'000 mètres en 2001, avant d’être détruit en vol peu de temps après.

En 2005, Alan Cocconi, le fondateur d’AC Propulsion, a réussi à faire voler pendant 48 heures un avion sans pilote de 5 mètres d'envergure entièrement propulsé par l'énergie solaire. C'est la première fois qu'un avion de ce type a pu voler pendant toute une nuit grâce à l'énergie collectée par des cellules solaires montées sur l'avion et stockée dans des batteries.

Même si le Solar Impulse n'est pas le premier avion solaire imaginé, aucun des précédents projets avec un pilote à bord n’a réussi à passer une nuit en vol.

Étant donné que l'énergie captée pendant la journée servira à recharger des batteries pour assurer le vol de nuit, le pilote aura la nécessité de se retrouver chaque soir avec des batteries pleines pour tenir jusqu'au lever de soleil suivant.

Les principaux fondateurs de ce projet sont au nombre de 2 :

  • Bertrand Piccard : l’auteur du premier tour du monde en ballon sans escale, qui est l'initiateur et le président du projet.
  • André Borschberg : pilote professionnel d'avion et d'hélicoptère, qui est le directeur général.

Les différentes étapes :

  • Le projet début en 1999, période à laquelle Bertrand Picard commence à imaginer cet avion.
  • Quatre ans plus tard, en compagnie d’André Borschberg, l’étude de faisabilité est réalisée l'Ecole Polytechnique de Lausanne.

Le Projet est alors lancé.

  • De 2004 à 2008, le concept est développé, et le premier prototype nommé HB-SIA est fabriqué, un avion de 63 m d'envergure.
  • Le premier vol d'essai d’une durée de 87 min est réalisé le 7 avril 2010. Le 8 juillet, le vol dure 26 heures et 9 minutes sans aucune interruption, et ce pendant une nuit entière (à une vitesse moyenne de 23 nœuds), ce qui est une réussite historique.
  • En 2010/2011, un second prototype est construit baptisé HB-SIB.
  • Le 13 mai 2011, l’avion parcourt 630 km durant 13 heures à environ 50km/h, avec à son bord André Borschberg.
  • Le 14 juin, l’avion vole 16h05, avant d’atterrir au Bourget.
  • Depuis 2012, plusieurs vols sont effectués, dont la traversée de l’Atlantique.
  • Le tour du monde sera le futur objectif. Un survol de la terre dans l'hémisphère Nord, en plusieurs étapes. En effet, cinq escales sont prévues pour changer de pilote et présenter l'appareil au public. Chaque tronçon du vol durera environ 3 à 4 jours, correspondant au temps considéré comme le maximum supportable pour un pilote seul.

Lorsque l'efficacité des batteries permettra d'en réduire le poids, l'avion pourra alors embarquer deux pilotes pour des vols de plus longues durées et le tour du monde sans escale deviendra alors envisageable.

Caractéristiques techniques et structure des matériaux

Fiche technique

Comparaison entre le Solar Impulse et l'Airbus A380
  • Envergure: 63,40 m
  • Longueur: 21,85 m
  • Hauteur: 6,40 m
  • Poids: 1 600 Kg
  • Vitesse moyenne: 70 km/h
  • Altitude maximale: 8 500 m
 

- L’avion a une envergure de 61 mètres (comparable à un Airbus A340), afin de minimiser la trainée induite et d’offrir une surface maximale aux cellules solaires. - Seul un appareil d’une envergure très démesurée par rapport à sa légèreté pourra voler assez lentement pour se contenter de l’énergie à disposition. La surface des ailes comptabilisent environ 200 m2 - Il est en revanche environ 280 fois moins lourd qu’un avion de type A380.

L’avion combine donc l’envergure de l’Airbus A340 avec la charge alaire (le rapport entre le poids de l’aéronef et sa surface portante (soit l'aile) en kg/m²) des parapentes et deltaplanes. A taille égale, sa structure est 8 fois plus légère que celle du meilleur planeur actuel

- Il a une vitesse moyenne de 70 km/h, ce qui reste bien inférieur à un avion classique. - La charge supportable est de 8 kg/ m2

Structures et matériaux

Illustration Solar Impulse.png

Atteindre 61 m d’envergure pour 1600 kg représente un véritable défi en termes de rigidité, de légèreté et de contrôlabilité en vol.

Le Solar Impulse est construit autour d’une sorte d’ossature en matériaux composites constitués de fibres de carbone et de nids d’abeilles assemblés en sandwich. L’aile est recouverte sur l’intérieur d’un film flexible et sur l’extérieur d’une peau composée de cellules solaires encapsulées.

 

Mode de fonctionnement – Système de propulsion & gestion énergétique

Système de propulsion

Sous les ailes sont disposés 4 nacelles contenant chacune un moteur (conçus par la société ETEL), une batterie au lithium polymère constituée de 70 accumulateurs et d’un système de gestion contrôlant la charge/décharge et la température. L’isolation thermique est conçue pour conserver la chaleur dégagée par les batteries et leur permettre ainsi de fonctionner malgré les -40 °C rencontrés à 8500 mètres, correspondant à l’altitude de vol maximale. Chaque moteur a une puissance de 10 CV et est muni d’un réducteur limitant à 200-400 tours /minute la rotation d’une hélice (bipale) de 3,5 mètre de diamètre.

La question énergétique

A midi, chaque m2 de surface reçoit en moyenne l’équivalent de 1000 Watts. Cela équivaut à 1.3 CV de puissance lumineuse. Sur 24 heures, l’énergie du soleil fournit donc une moyenne de 250 W/m2. Avec 200 m2 de cellules photovoltaïques et 12 % de rendement total de la chaîne de propulsion, la puissance moyenne produite par les moteurs de l’avion n’atteint que 8 CV ou 6 kW.

Le projet nécessite donc l’optimisation dans la conversion des nombreuses formes d’énergies mises en jeu :

Solar Impulse Photo.png
  • L’énergie lumineuse dans le rayonnement solaire
  • L’énergie électrique au niveau des cellules photovoltaïques, des batteries et des moteurs
  • L’énergie mécanique via le système de propulsion
  • L’énergie thermique pour toutes les pertes (frottements, échauffement…)
  • L’énergie chimique dans les batteries
  • L’énergie cinétique lorsque l’avion prend de la vitesse
  • L’énergie potentielle quand l’avion prend de l’altitude
 

Le Solar Impulse gagnera de l'altitude pendant la journée et redescendra ensuite pendant la nuit, afin d’économiser une quantité importante de l'énergie de ses batteries.

A bord du monoplace est présent un système informatique qui permet de récolter et d’analyser des centaines de paramètres, et ainsi donner au pilote et à l’équipe des informations sur le vol. Il fournit également aux moteurs la puissance optimale compte tenu de la configuration de vol et de l’état de charge/décharge des batteries. L’avion devient alors capable de corriger et donc de minimiser par lui-même sa consommation d’énergie.

Les cellules solaires (détaillées plus bas) doivent être en mesure de couvrir les besoins en électricité de l'avion en vol mais aussi de recharger les batteries.

La sollicitation des moteurs par les pilotes est très importante. Chaque moteur du Solar Impulse consomme 9 kW à plein rendement (équivalent à 12.2 CV) au maximum pendant 5 minutes. En effet, passé ce délai, les moteurs surchauffent.

En exploitation normale, chaque moteur ne produit que 5,5 kW (équivalent à 7.5 CV)et en exploitation minimale, cette puissance ne représente plus que 2,4 kW( équivalent à 3.3 CV). Ce minimum permet à l'avion de rester en l'air mais ne lui permet pas de gagner de l'altitude. Les autres appareils embarqués à bord consomment en tout 250 watts.

Quant au système de communication ultraléger (développé par la société Swisscom), il ne consomme que 50 watts.


Les cellules solaires utilisées

Il y a précisément 11628 cellules solaires disposées sur le monoplace[2]:

  • 10 748 cellules qui recouvrent les 200 m2 des ailes
  • 880 cellules sur le stabilisateur horizontal

Les cellules solaires sont en silicium monocristallin.

Elles sont ultra-minces et intégrées dans les ailes :

  • Les cellules font 145 microns d’épaisseur
  • Elles ont un rendement de 22%.

Ces cellules ont été sélectionnées pour leur rapport optimal poids/rendement, ainsi que pour leur capacité à combiner légèreté et rendement.

Même si leur efficacité aurait pu être encore meilleure, comme pour les panneaux utilisés dans l’espace, leur poids aurait alors été beaucoup trop important, ce qui aurait été inapproprié pour le vol de nuit.

La puissance fournie par les cellules dépend de l'intensité du rayonnement solaire et de l'angle d'attaque de ce rayonnement sur les ailes.

Les cellules solaires sont fournies par l'entreprise californienne Sunpower, leaders en matière d'efficacité des cellules solaires. L’entreprise ne livre normalement que des panneaux solaires complets et équipés de cellules fixes. Cependant, pour le projet Solar Impulse, une exception a été faite. Tant donné qu’ il fallait recouvrir toute la surface de la voilure, Sunpower a fourni des cellules isolées à condition que l'utilisation et la fonction de ces cellules fassent l'objet d'un suivi précis, pour avoir la certitude qu'aucune d’elles ne soient détournée à d'autres fins.

Le stockage de l’énergie

Le vol de nuit étant la principale difficulté, la contrainte majeure du projet se situe donc au niveau des batteries.

En effet, l’un des défis majeurs pour le Solar Impulse est la problématique du stockage de l’énergie. Pour que l’avion puisse voler sans discontinuité, il doit pouvoir compter sur l’énergie emmagasinée pendant les huit heures d’ensoleillement exploitables sur les 24h. L’avion capte l’énergie nécessaire à son vol mais doit en stocker suffisamment dans ses batteries, afin de lui permettre se maintenir en vol pendant les 16 heures restantes.

Avec une densité énergétique de 200 Wh/kg, la masse d’accumulateurs nécessaires pour un vol de nuit se monte à 400 kg. Cela représente plus du ¼ de la masse totale de l’avion.

Ce paramètre oblige à réduire considérablement la masse de l’avion, à optimiser la chaîne énergétique et à maximiser le rendement aérodynamique (avec un grand allongement et un profil d’aile conçu pour les basses vitesses)

Les batteries sont en Lithium polymère.

Une amélioration de la capacité des batteries permettrait à terme d’embarquer un deuxième pilote, de diminuer l’envergure de l’avion ou d’augmenter la vitesse de vol.

Les batteries proviennent de la société sud-coréenne Kokam, l'une des plus grandes entreprises spécialisées dans les batteries pour voitures électriques: un marché en pleine expansion (Voir IV).

Les batteries Lithium-polymère du Solar Impulse présentent une meilleure longévité que les accumulateurs lithium-ion traditionnels, ainsi qu'une capacité supérieure. Les quatre batteries d'une capacité totale de 80 000 W ont déjà été remplacées par de nouvelles batteries allégées de 5 kilos par pièce, pour une capacité identique. L'avion est ainsi allégé de 20 kilos, ce qui n'est pas négligeable puisque sur Solar Impulse, comme vu précédemment, chaque kilo compte.

Comparaison avec un avion classique

Le projet a coûté environ 75 millions d’euros et a été financé par trois sponsors principaux, Solvay, Omega et Deutshe Bank.

A raison de 150 Wh/kg de batterie au lithium (0,54 MJ/kg), les 310.000 litres embarqués par un grand avion de ligne actuel nécessiteraient :

- [310000 (litres) x 0,85(Densité) x 43 MJ/kg].[0,27/0,50 (Rendement)] /0,54 MJ/kg (batteries) = 11300 tonnes de batteries au lithium, soit l’équivalent du poids d’un cargo.

A raison de 150W/m² de panneaux solaires, un grand avion de ligne actuel nécessiterait :

- 17900 (litres/heure) x 0,85 (densité) x 43 MJ/kg].[0,27/0,50 (Rendement)] /3600’’/ 150 w/m² = 654 000 m² de panneaux solaires à midi - (L’équivalent d’environ 65 hectares en croisière, et environ 220 hectares de panneaux solaires pour décoller)

Même en imaginant des progrès technologiques conséquent, il sera difficile de voir un jour un avion tout électrique décoller.

Solar Impulse Photo2.png

En conclusion, même s’il est difficile de comparer le monoplace solaire à un avion de type A380, l’avion solaire reste similaire à un avion « normal » : il ne diffère que par la technologie utilisée pour réduire au maximum les effets des facteurs perturbants pour le vol de l’avion soit le poids et la traînée, tout en permettant une poussée suffisante au vol grâce à l’aérodynamisme commun à tout avion.

Au niveau énergétique l’avion « normal » et l’avion solaire n’ont pas besoin d’un même moteur pour faire fonctionner leurs moyens de propulsion, comme les réacteurs d’un avion « normal », ou bien les hélices de l’avion solaire. Dans le cas du Solar Impulse, le moteur n’est pas alimenté de la même façon que pour un A380 par exemple.

Il existe donc une différence majeure entre les moyens pour parvenir à l’énergie mécanique créée par les moteurs les deux avions : en effet, un avion « normal » marche au kérosène, brûle la ressource fossile afin de dégager une énergie très importante mais aussi beaucoup de chaleur, de CO2 et autre produits toxiques dans l’air, chose que ne fait pas le SolarImpulse.
  1. Solar Impulse - Site web officiel :[1]
  2. Altran, magazine Altitude - Solar Impulse déploie ses ailes :[2]