Transport ferroviaire photovoltaïque

De Solarpedia
Aller à : navigation, rechercher

Le transport ferroviaire : Le TER Solaire

Présentation

Photo TER Solaire.png

La SNCF a inauguré son premier train express régional équipé de panneaux solaires dans la région Poitou-Charentes en juillet 2010, pour une expérimentation d’une durée de 3 ans[1].

Le TER ne fonctionne pas entièrement à l'énergie solaire, mais l’énergie solaire permet de faire supporter aux panneaux l'éclairage et la climatisation des rames.

 

Mode de fonctionnement et utilisation de l’énergie solaire

Le dispositif va permettre d’avoir une autonomie énergétique au niveau de l’éclairage et aussi de recharger les batteries pendant les arrêts, cette nouvelle autonomie permettra d’éviter un certain nombre de pannes.

En plus des panneaux photovoltaïques, et pour optimiser l’utilisation de ces derniers, le TER solaire est équipé de diodes peu gourmandes en énergie pour l’éclairage (remplacement des spots halogène 20W par des spots LED 3W) afin de limiter la consommation d’énergie ainsi que de films isolants sur les vitres afin d’optimiser l’efficacité la climatisation.

De ce fait, le système est indépendant de l'alimentation traditionnelle des rames.

Dans le cas d'une panne du système et d'une immobilisation du train en pleine voie, la climatisation peut continuer de fonctionner et améliore ainsi le confort des passagers.

En cas d’arrêt soudain du TER, l’énergie solaire produite assure la ventilation et la lumière durant l’interruption.

Les cellules solaires utilisées

Sur le train sont installés 2 types de panneaux solaires :

  • des modules en CIGS de Ascent Solar
  • des modules en silicium amorphe de Flexcell

Il y a 16 modules Ascent (d’une puissance de 720Wc) et 18 modules Flexcell (d’une puissance de 486Wc) d’installés.

Les panneaux proviennent de la société Disasolar, filiale de Disatech.

Les modules en silicium amorphe

Schema Cellule Silicium Amorphe.png

Fiche technique et avantages

  • Modules solaires de type silicium amorphe en couches minces
  • Faible sensibilité aux ombres portées
  • Rendement spécifique énergétique relativement élevé en toiture plate
  • Les modules sont : léger, souple, résistant
  • Installation en simple ou double couche
  • Solution esthétique intégrée au bâtiment
 

Les modules CIGS

Dans l'alliage CIGS, la concentration d'indium et de gallium peut varier du séléniure de cuivre et d'indium pur à du séléniure de cuivre et de gallium pur.

Schema Cellule CIGS.png

L'alliage CIGS entre principalement dans la fabrication d'une cellule solaire utilisée sous forme d’une couche mince polycristalline, comme dans les cellules de première génération issues du silicium elles utilisent le principe de la jonction PN. La différence est que la structure du CIGS forme une jonction complexe constituée de matériaux de nature différentes (hétéro-jonction) de type CIGS(p)/CdS(n)/ZnO(n) dans les dispositifs a plus haut rendement.

 

La structure de base d’une cellule solaire à couche mince CIGS (Cu(In,Ga)Se2) est représentée sur l'image ci-dessus.

Il est composé de 8 éléments principaux :

  • Le substrat : Le plus utilisé est le verre sodé (dopé au silicium)
  • Un contact ohmique inférieur, en général du Molybdène
  • Une couche absorbante : dans ce cas du CIGS de type P
  • Une couche tampon : Généralement du CdS ou le ZnS de type N (L’interface CIGS/CdS forma la jonction PN)
  • Un oxyde transparent isolant : ZnO
  • Un oxyde transparent conducteur : ZnO dopé Al (ou Indium dopé étain)
  • Une couche anti-reflet : MgF2
  • Un contact ohmique supérieur (grille métallique NiAl) déposée sur la face avant pour contacter le ZnO.

La couche absorbante est constituée d’un matériau à grand coefficient d’absorption, dans le domaine du visible (1,4 – 1,5 eV). Dans le cas du CIGS, c’est un absorbeur de type P, avec une énergie de bande interdite de 1.02 eV (CuInSe2) ou de 1.65 eV (CuGaSe2). L'absorption est minimisée dans les couches supérieures, appelées fenêtre, par le choix d'énergies de bande interdite plus élevées: Eg, ZnO=3.2 eV et Eg, CdS=2.4 eV


Objectifs

Selon la société Disasolar qui a installé les panneaux, l’objectif est d’économiser de 2 500 à 3 000 kW/heures d’électricité, soit 12 tonnes d’équivalent CO2 rejetés en moins en an.

Le projet a coûté au total 400 000 euros, et a été financé à hauteur de 250 000 euros par la SNCF et de 150 000 euros par la Région Poitou-Charentes.

L’objectif est de dépenser 15% d’énergie globale en moins, par rapport à un TER classique. Le gain de rejet de CO2 entre 10 et 15 tonnes par an, pour un train de six voitures.
  1. Green Univers - Un train solaire pour la SNCF, oui mais pour alimenter l’éclairage :[1]